

C++ Concepts
 Introduction

 Introduction to Objects and Object Oriented
Programming, Encapsulation (Information Hiding)
 Access Modifiers: Controlling access to a class method/
variable (public, protected, private, package),
Other Modifiers,
Polymorphism: Overloading,
Inheritance,
 Overriding Methods,
Abstract Classes,
 Reusability,
Class’s Behaviors.

What is Object Oriented
Programming?

An object is like a
black box.

 The internal details
are hidden.

 Identifying objects and
assigning responsibilities to
these objects.

 Objects communicate to other
objects by sending messages.

 Messages are received by the
methods of an object

3

The two steps of Object Oriented
Programming
 Making Classes: Creating, extending or reusing

abstract data types.

 Making Objects interact: Creating objects from
abstract data types and defining their relationships.

4

Example: The Creature class

Class Creature {

private:

 int yearOfBirth;

public:

 void setYearOfBirth(year) {

 yearOfBirth = year;

 }

 int getYearOfBirth() {

 return yearOfBirth;

 }

};

born1997

Example: The Creature class
class Creature {

private:

 int yearOfBirth;

public:

 void setYearOfBirth(year) {

 yearOfBirth = year;

 }

 int getYearOfBirth() {

 return yearOfBirth;

 }

};

The definition of a
class:
•The class keyword,
followed by the class name.
•private attributes.
•public methods.
•the ; at the end

Example: The Creature class
class Creature {

private:

 int yearOfBirth;

public:

 void setYearOfBirth(year) {

 yearOfBirth = year;

 }

 int getYearOfBirth() {

 return yearOfBirth;

 }

};

This class has two (public) methods.
One to set the attribute value and the
other to retrieve the attribute value.

Example: The Creature class
class Creature {

private:

 int yearOfBirth;

public:

 void setYearOfBirth(year);

 int getYearOfBirth();

};

void Creature::setYearOfBirth {

 yearOfBirth = year;

 }

int Creature::getYearOfBirth() {

 return yearOfBirth;

 }

Note that unless the methods are very
short, declaration and
implementation is usually separated.

The declaration goes
into a header file (.h),
the implementation in a
.cpp file.

Example: The Creature class
class Creature {

private:

 int yearOfBirth;

public:

 void setYearOfBirth(year) {

 yearOfBirth = year;

 }

 int getYearOfBirth() {

 return yearOfBirth;

 }

};

This method is an example for a
‘modifier’ method. It modifies the
attribute. The method changes the
state of the object.

Example: The Creature class
class Creature {

private:

 int yearOfBirth;

public:

 void setYearOfBirth(year) {

 yearOfBirth = year;

 }

 int getYearOfBirth() {

 return yearOfBirth;

 }

};

This method is an example for a
‘selector’ method. It returns
information about the attribute but
does not change the state of the
object.

Classes & Objects
 What may be different for all objects in a class, and

what remains the same?

 All the objects in a class may have different attribute
values (state data), but their allowed behaviours are all
the same.

11

Objects & Classes
A class is defined

by:

A Unique Name

Attributes

Methods

An object is defined
by:

 Identity

State

Behaviour

12

Instantiating Objects
 An object is instantiated just like any other data type:

int x;

char y;

Creature z;

13

Declaring z of type ‘creature’ means we
have generated an object with the attributes
and methods of the class.

Multiple Objects
 Of course we can create many objects of the same

class:

Creature myDog;

Creature theMilkman;

Creature myBestFriend;

14

Creates three objects.

Sending Messages /
 Calling Methods.
 A message is send to an object by calling a method of

this object. Use the . (dot) for calling a method of an
object.

int k;

k = theMilkman.getYearOfBirth();

myDog.setYearOfBirth(1998);

15

Messages are sent to my dog
and the milkman.

Back to the Instantiation...
 An object is instantiated just like any other data type:

int x;

char y;

Creature z;

16

Here the “default constructor” of the Creature class is
automatically called.
If we don’t like this we can specify constructors
explicitly!

The Creature class with a user defined
default constructor.
class Creature {

private:

 int yearOfBirth;

public:

 // …

 Creature() {

 yearOfBirth = 1970;

 cout << “Hello.”;

 }

};

The syntax for a constructor
is similar as for a method, but:
•It has the same name as the class.
•It has no return value.

The Creature with a parametrized
constructor.
class Creature {

private:

 int yearOfBirth;

public:

 // …

 Creature(int year) {

 yearOfBirth = year;

 }

};

This constructor can be used as follows:

Creature theMilkman(1953);

instantiates a 49 years old milkman.

The Creature with a copy constructor.

class Creature {

private:

 int yearOfBirth;

public:

 // …

 Creature(Creature & otherCreature) {

 yearOfBirth =

 otherCreature.getYearOfBirth();

 }

};

Example:

Creature myDog(1995);
Creature myCat(myDog);

creates a cat of the same age as the dog.

Constructors - summary
 A constructor is always called when an object is

created.

 We can define our own constructors (Note: a class can
have more than one constructor).

 If an object is copied from another object then the
copy constructor is called.

20

Again:
Objects & Classes
A class is defined

by:

A Unique Name

Attributes

Methods

An object is defined
by:

 Identity

State

Behaviour

21

Again:
Objects & Classes
A class is defined

by:

A Unique Name

Attributes

Methods

An object is defined
by:

 Identity

State

Behaviour

22

But: We can give a class state and behaviour with the keyword
static!

Example: The Creature class

class Creature {

private:

 int yearOfBirth;

 static int numberOfAllCreatures = 0;

public:

 Creature() { // Constructor - counts the creatures.

 numberOfAllCreatures++;

 }

 static int getNumberOfAllCreatures() {

 return numberOfAllCreatures;

 }

};

Note that all objects share the same
value of the “class attribute”
numberOfAllCreatures.

Summary.
 A class is a blueprint for an object.

 Objects are created similar to other data types (int,
char, …).

 The construction of an object can be defined by
the user.

 Messages are sent to an object by calling a method.

 static messes the concept of classes and objects
(but is nevertheless useful).

24

