B —

Section 2: Lecture 3

= C++ Concepts

/’

Introduction

Introduction to Objects and Object Oriented
Programming, Encapsulation (Information Hiding)
Access Modifiers: Controlling access to a class method/
variable (public, protected, private, package),
Other Modifiers,

Polymorphism: Overloading,

Inheritance,

Overriding Methods,
Abstract Classes,

Reusability,

Class’s Behaviors.

~What is Object W

Programming?

R Identifying objects and
h assigning responsibilities to
' these objects.
- Objects communicate to other
An object is like a objects by sending messages.

black box. Messages are received by the
The internal details § methods of an object

are hidden.

~The two steps of Object riented

Programming

Making Classes: Creating, extending or reusing
abstract data types.

Making Objects interact: Creating objects from
abstract data types and defining their relationships.

Class Creature {
private:
int yearOfBirth;
public:
void setYearOfBirth(year) {
yearOfBirth = year;
}
int getYearOfBirth() {
return yearOfBirth;

}

class Creature {
private:

1C.

publ

public:
void setYearOfBirth(year) {
yearOfBirth = year;

J
int getYearOfBirth() {

return yearOfBirth;

J

class Creature {

private:
int yearOfBirth;
public:
void setYearOfBirth(year);
int getYearOfBirth();
5
void Creature::setYearOfBirth {
yearOfBirth = year;
}
int Creature::getYearOfBirth() {
return yearOfBirth;

J

T
A,

A

RN AN
P, AP P -,

T
e -, P I P, e

b,
P, P

=

public:
void setYearOfBirth(year) {
yearOfBirth = year;

-
2 o []

public:

int getYearOfBirth() {
return yearOfBirth;

Classes & Objects

* What may be different for all objects in a class, and
what remains the same?

* All the objects in a class may have different attribute
values (state data), but their allowed behaviours are all
the same.

/

= sifif

P
Objects & Classes
A class is defined An object is defined
by: by:
e A Unique Name e [dentity
o Attributes o State

e Methods e Behaviour

Instantiating Objects

* An object is instantiated just like any other data type:

Int x;
chary;
Creature z;

13

P R

Multiple Objects

* Of course we can create many objects of the same
class:

Creature myDog;

Creature theMilkman;
Creature myBestFriend;

14

Calling Methods.

* A message is send to an object by calling a method of
this object. Use the . (dot) for calling a method of an
object.

int k;
k = theMilkman.getYearOfBirth();
myDog.setYearOfBirth(1998);

Back to the Instantiation...

* An object is instantiated just like any other data type:

Int x;
chary;
Creature z;

automatically called.
If we don't like this we can specify constructors
explicitly!

16

The Creature class'with.a user defined

~default constructor.

class Creature {

private:
int yearOfBlrth; The syntax for a constructor
public: is similar as for a method, but:
It has the same name as the class.
/ / It has no return value.

Creature() {
yearOfBirth = 1970;

cout << “Hello.”;

}
b

The Creature with'a=parametrized
~constructor.

class Creature {

private:
int yearOfBirth;
public: This constructor can be used as follows:
. Creature theMilkman(1953);
Creature(int year) {
yearOfBirth = year, instantiates a 49 years old milkman.
J

5

“The Creature with a copy constructor.

Example:
Creature myDog(1995);
Cl‘”—}ss Creature { Creature myCat(myDog);
private:
int ye arOfBirth; creates a cat of the same age as the dog.
public:
e
Creature(Creature & otherCreature) {
yearOfBirth =
otherCreature.getYearOfBirth();
}

b

/’

- e

/

Constructors - summary

A constructor is always called when an object is
created.

We can define our own constructors (Note: a class can
have more than one constructor).

If an object is copied from another object then the
copy constructor is called.

%évgain:
Objects & Classes

A class is defined

by:

* A Unique Name
e Attributes
e Methods

=

An object is defined
by:

e [dentity
o State

e Behaviour

O L /
_Again: -

Objects & Classes

A class is defined An object is defined
by: by:

e A Unique Name e [dentity

o Attributes o State

e Methods e Behaviour

But: We can give a class state and behaviour with the keyword
static!

/Example: The Creatureclass—

class Creature {
private:
int yearOfBirth;

Note that all objects share the same
value of the “class attribute”
numberOfAllCreatures.

static int numberOfAllCreatures = o;

public:

Creature() { // Constructor - counts the creatures.
numberOfAllCreatures++;

}

static int getNumberOfAllCreatures() {
return numberOfAllCreatures;

}

>

Summary.

A class is a blueprint for an object.

Objects are created similar to other data types (int,
char, ...).

The construction of an object can be defined by
the user.

Messages are sent to an object by calling a method.

static messes the concept of classes and objects
(but is nevertheless useful).

