

C++ Concepts
 Introduction

 Introduction to Objects and Object Oriented
Programming, Encapsulation (Information Hiding)
 Access Modifiers: Controlling access to a class method/
variable (public, protected, private, package),
Other Modifiers,
Polymorphism: Overloading,
Inheritance,
 Overriding Methods,
Abstract Classes,
 Reusability,
Class’s Behaviors.

What is Object Oriented
Programming?

An object is like a
black box.

 The internal details
are hidden.

 Identifying objects and
assigning responsibilities to
these objects.

 Objects communicate to other
objects by sending messages.

 Messages are received by the
methods of an object

3

The two steps of Object Oriented
Programming
 Making Classes: Creating, extending or reusing

abstract data types.

 Making Objects interact: Creating objects from
abstract data types and defining their relationships.

4

Example: The Creature class

Class Creature {

private:

 int yearOfBirth;

public:

 void setYearOfBirth(year) {

 yearOfBirth = year;

 }

 int getYearOfBirth() {

 return yearOfBirth;

 }

};

born1997

Example: The Creature class
class Creature {

private:

 int yearOfBirth;

public:

 void setYearOfBirth(year) {

 yearOfBirth = year;

 }

 int getYearOfBirth() {

 return yearOfBirth;

 }

};

The definition of a
class:
•The class keyword,
followed by the class name.
•private attributes.
•public methods.
•the ; at the end

Example: The Creature class
class Creature {

private:

 int yearOfBirth;

public:

 void setYearOfBirth(year) {

 yearOfBirth = year;

 }

 int getYearOfBirth() {

 return yearOfBirth;

 }

};

This class has two (public) methods.
One to set the attribute value and the
other to retrieve the attribute value.

Example: The Creature class
class Creature {

private:

 int yearOfBirth;

public:

 void setYearOfBirth(year);

 int getYearOfBirth();

};

void Creature::setYearOfBirth {

 yearOfBirth = year;

 }

int Creature::getYearOfBirth() {

 return yearOfBirth;

 }

Note that unless the methods are very
short, declaration and
implementation is usually separated.

The declaration goes
into a header file (.h),
the implementation in a
.cpp file.

Example: The Creature class
class Creature {

private:

 int yearOfBirth;

public:

 void setYearOfBirth(year) {

 yearOfBirth = year;

 }

 int getYearOfBirth() {

 return yearOfBirth;

 }

};

This method is an example for a
‘modifier’ method. It modifies the
attribute. The method changes the
state of the object.

Example: The Creature class
class Creature {

private:

 int yearOfBirth;

public:

 void setYearOfBirth(year) {

 yearOfBirth = year;

 }

 int getYearOfBirth() {

 return yearOfBirth;

 }

};

This method is an example for a
‘selector’ method. It returns
information about the attribute but
does not change the state of the
object.

Classes & Objects
 What may be different for all objects in a class, and

what remains the same?

 All the objects in a class may have different attribute
values (state data), but their allowed behaviours are all
the same.

11

Objects & Classes
A class is defined

by:

A Unique Name

Attributes

Methods

An object is defined
by:

 Identity

State

Behaviour

12

Instantiating Objects
 An object is instantiated just like any other data type:

int x;

char y;

Creature z;

13

Declaring z of type ‘creature’ means we
have generated an object with the attributes
and methods of the class.

Multiple Objects
 Of course we can create many objects of the same

class:

Creature myDog;

Creature theMilkman;

Creature myBestFriend;

14

Creates three objects.

Sending Messages /
 Calling Methods.
 A message is send to an object by calling a method of

this object. Use the . (dot) for calling a method of an
object.

int k;

k = theMilkman.getYearOfBirth();

myDog.setYearOfBirth(1998);

15

Messages are sent to my dog
and the milkman.

Back to the Instantiation...
 An object is instantiated just like any other data type:

int x;

char y;

Creature z;

16

Here the “default constructor” of the Creature class is
automatically called.
If we don’t like this we can specify constructors
explicitly!

The Creature class with a user defined
default constructor.
class Creature {

private:

 int yearOfBirth;

public:

 // …

 Creature() {

 yearOfBirth = 1970;

 cout << “Hello.”;

 }

};

The syntax for a constructor
is similar as for a method, but:
•It has the same name as the class.
•It has no return value.

The Creature with a parametrized
constructor.
class Creature {

private:

 int yearOfBirth;

public:

 // …

 Creature(int year) {

 yearOfBirth = year;

 }

};

This constructor can be used as follows:

Creature theMilkman(1953);

instantiates a 49 years old milkman.

The Creature with a copy constructor.

class Creature {

private:

 int yearOfBirth;

public:

 // …

 Creature(Creature & otherCreature) {

 yearOfBirth =

 otherCreature.getYearOfBirth();

 }

};

Example:

Creature myDog(1995);
Creature myCat(myDog);

creates a cat of the same age as the dog.

Constructors - summary
 A constructor is always called when an object is

created.

 We can define our own constructors (Note: a class can
have more than one constructor).

 If an object is copied from another object then the
copy constructor is called.

20

Again:
Objects & Classes
A class is defined

by:

A Unique Name

Attributes

Methods

An object is defined
by:

 Identity

State

Behaviour

21

Again:
Objects & Classes
A class is defined

by:

A Unique Name

Attributes

Methods

An object is defined
by:

 Identity

State

Behaviour

22

But: We can give a class state and behaviour with the keyword
static!

Example: The Creature class

class Creature {

private:

 int yearOfBirth;

 static int numberOfAllCreatures = 0;

public:

 Creature() { // Constructor - counts the creatures.

 numberOfAllCreatures++;

 }

 static int getNumberOfAllCreatures() {

 return numberOfAllCreatures;

 }

};

Note that all objects share the same
value of the “class attribute”
numberOfAllCreatures.

Summary.
 A class is a blueprint for an object.

 Objects are created similar to other data types (int,
char, …).

 The construction of an object can be defined by
the user.

 Messages are sent to an object by calling a method.

 static messes the concept of classes and objects
(but is nevertheless useful).

24

